

IHB - Induction Hi-Bay

Seeking an Ultra-long Life Energy Efficient Lighting Solution?

- Induction is a mid-priced option, typically more costly than linear fluorescent, but lower cost than LED, and P2 can tailor it to your needs.
- Sylvania Icetron systems are rated for 100,000 hour system life dramatically reducing long term maintenance costs.

Why P2? It's Simple, Our Relighting Experience.

- Properly deployed, Induction is a valuable niche light source.
- Improperly deployed on your project, it can be a nightmare.
- We understand what it takes to successfully deploy the latest energy efficient, long life lighting technologies and tailor them to your application.
- Our engineers have the tools and expertise to thermally and photometrically model your system to ensure that the long life and performance promised by induction light sources is delivered.

Application

- Hi-Bay or Lo-Bay applications where maintenance costs are compounded by inaccessible fixtures or prescribed lengthy service intervals.
- Optional Retail Louver
- Applications where routine outages can not be tolerated.
- Applications where service is not possible without decertifying the facility; nuclear, high security, clean rooms, etc.

IHB - ICF - 2x4 - 41K - UL - POC15

Fixture Series

IHB = Induction Hi Bay

Induction System

ICA = Osram, 77 Watt, 6500 Lumen System ICB = Osram, 103 Watt, 8000 Lumen System ICD = Osram, 149 Watt, 11000 Lumen System ICE = Osram, 156 Watt, 12000 Lumen System ICF = Osram, 312 Watt, 24000 Lumen System

2x2 = 2x2 Nominal (ICA, ICB, ICD, ICE only) 2x4 = 2x4 Nominal (ICF only)

Lamp Color

35K = 3500 Kelvin41K = 4100 Kelvin 50K = 5000 Kelvin

Voltage

UL = Universal Low 120 through 277volt UH = Universal High 347 through 480volt

Primary Wiring

NW = No Whip, Daylight Primary Power for Field Connection C8 = 8' Cord, No Plug, Pre-Stripped C8/L715 = 8' Cord & 277v Twistlock Plug (NEMA L7-15P) PQC15 = 15' Cord with In-Line Quick Connect

Other CA = Clear Acrylic Lens

ZR = Deep Cell Retail Louver RHx = Rectangular Aisle View Hi-Bay Occupancy Sensor RLx = Rectangular Aisle View Lo-Bay Occupancy Sensor SHx = Standard 360 View Hi-Bay Occupancy Sensor SLx = Standard 360 View Lo-Bay Occupancy Sensor * Replace [x] with numeral to inidicates

number of lamps on sensor.

IHB - Induction Hi-Bay

Fixture Construction

- Heavy duty, fully ventilated .032 aluminum body provides maximum heat dissipation and longer component life.
- Enhanced aluminum reflector.
- Osram Sylvania technology.
- Amalgam controlled Hg vapor provides stable light output.
- Made in the USA: Hudson WI, Gainesville FL, Orange County CA.

Existing System

Existing HID	Lamp		Initial Lamp	Mean Lumens		S/P (2) Adjusted	System Input	Lumens (3)	
System		Qty & Type	Lumens	Lumens Per Lamp S		Lumens	Watts	Per Watt	Rated Life (Hours)
HPS-150 Standard	1	HPS150	15,000	13,500	0.62	9,298	190	49	24,000
MH-175 Standard	1	MH175	13,500	8,775	1.49	11,977	210	57	10,000
HPS-250 Standard	1	HPS250	27,000	24,300	0.62	16,737	295	57	24,000
MH-250 Standard	1	MH250	20,500	13,500	1.49	18,425	295	62	10,000
MH-400 Standard	1	MH400	36,000	24,000	1.49	32,756	458	72	24,000
HPS-400 Standard	1	HPS400	50,000	45,000	0.62	30,994	464	67	24,000

Re-Lighting Options

Proposed HID		Lamp	Initial Lamp	Mean Lumens Per		S/P (2) Adjusted	System Input	Lumens (3)	Rated Life
System		Qty & Type	Lumens	Lamp	S/P (1) Ratio	Lumens	Watts	Per Watt	(Hours)
ICA - ICE70 & QT100 Ballast	1	ICE70/841	6,500	4,830	1.62	7,037	77	91	100,000
ICB - ICE100 & QT100 Ballast	1	ICE100/841	8,000	5,945	1.62	8,661	103	84	100,000
ICD - ICE100 & QT150 Ballast	1	ICE100/841	11,000	8,175	1.62	11,910	149	80	100,000
ICE - ICE150 & QT150 Ballast	1	ICE150/841	12,000	8,915	1.62	12,988	156	83	100,000
ICF - (2) ICE150 & QT150 Ballasts	2	ICE150/841	24,000	17,830	1.62	25,976	312	83	100,000

Numeric Footnotes

- (1) S/P Ratio = Scotopic to Photopic Lumens
- (2) SP Adjusted Lumens = Mean Lumens x (S/P).78 [.78 exponent]
- (3) Lumens Per Watt = S/P Adjusted Lumens / Fixture Input Watts

General Notes:

- There are many operating and thermal variables that affect Induction system output.
 Consult factory for assistance in modeling your Induction system.
- Values shown are based on design operating temperatures and at 277 volts.
- Fixture efficiencies and system layout are not comprehended in the table, but will also affect the usefulness of the system.